Re: diphtheria toxin-epidermal growth factor fusion protein DAB389EGF for the treatment of bladder cancer.
نویسنده
چکیده
PURPOSE The novel fusion protein, DAB(389)EGF, is composed of both the catalytic and the translocation domains of diphtheria toxin that are fused to the human EGF, providing a targeting and a toxicity component. We tested DAB(389)EGF for antitumor activity in both in vitro and in vivo urinary bladder cancer models. EXPERIMENTAL DESIGN Human bladder cancer lines were treated with DAB(389)EGF and assessed for growth inhibition and clonogenic suppression. Using 6- to 8-week-old female athymic nude mice implanted orthotopically with HTB9 cells, DAB(389)EGF was administered intravesically twice weekly for 2 weeks. The response of the luciferase-expressing HTB9 cells was monitored via bioluminescence as the primary endpoint. RESULTS Treatment response with DAB(389)EGF was specific and robust, with an IC(50) ranging from 0.5 to 15 ng/mL in eight tested bladder cancer cell lines, but greater than 50 ng/mL in the EGF receptor (EGFR)-negative H520 control cell line. Simulating short-duration intravesical therapy used clinically, a 2-hour treatment exposure of DAB(389)EGF (10 ng/mL) produced clonogenic suppression in three selected bladder cancer cell lines. In vivo, luciferase activity was suppressed in five of six mice treated with DAB(389)EGF [70 μL (1 ng/μL) per mouse], as compared with only one of six mice treated with a control diphtheria toxin (DT) fusion protein. Histologic assessment of tumor clearance correlated with the bioluminescent changes observed with DAB(389)EGF treatment. Immunocompetent mice treated with intravesical DAB(389)EGF did not show any nonspecific systemic toxicity. CONCLUSIONS The intravesical delivery of targeted toxin fusion proteins is a novel treatment approach for non-muscle-invasive urinary bladder cancer. With appropriate targeting, the treatments are effective and well-tolerated in vivo.
منابع مشابه
Interstitial diphtheria toxin-epidermal growth factor fusion protein therapy produces regressions of subcutaneous human glioblastoma multiforme tumors in athymic nude mice.
PURPOSE The novel fusion protein, DAB389EGF, composed of the catalytic and translocation domains of diphtheria toxin (DAB389) fused with a His-Ala linker to human epidermal growth factor (EGF) was tested for antiglioma efficacy in an in vivo model of human glioma. EXPERIMENTAL DESIGN Female athymic nude mice (ages 4-6 weeks) were inoculated s.c. with 10 million U87MG human glioma cells in the...
متن کاملA diphtheria toxin-epidermal growth factor fusion protein is cytotoxic to human glioblastoma multiforme cells.
The cytotoxicity of a diphtheria toxin-human epidermal growth factor fusion protein (DAB(389)EGF) was tested against 14 human glioma cell lines. After cells were cultured for 48 h with various concentrations of DAB(389)EGF, the percentage reduction in thymidine incorporation was determined. For 13 of 14 cell lines, potent cytotoxicity was observed, with IC(50)s of 0.4-50 pM. The epidermal growt...
متن کاملDesigning and Analyzing the Structure of DT-STXB Fusion Protein as an Anti-tumor Agent: An in Silico Approach
Background & Objective: A main contest in chemotherapy is to obtain regulator above the biodistribution of cytotoxic drugs. The utmost promising strategy comprises of drugs coupled with a tumor-targeting bearer that results in wide cytotoxic activity and particular delivery. The B-subunit of Shiga toxin (STxB) is nontoxic and possesses low immunogenicity that exactly binds to t...
متن کاملDesign and Production of Recombinant TAT Protein Structure, Catalytic Domain of Diphtheria Toxin, and Evaluation of Its Effect on Cell Line
Background and Objectives: Cancer is one of the most deadly diseases in the present age and its conventional therapies have had low success. Toxin therapy of cancer is a new therapeutic approach, which has attracted the attention of pharmaceutical specialists. Diphtheria toxin consists of three functional, transducing, and binding domains, that the functional part inhibits protein synthesis and...
متن کاملIn vivo Characterization of Fusion Protein Comprising of A1 Subunit of Shiga Toxin and Human GM-CSF: Assessment of Its Immunogenicity and Toxicity
Background: Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. Methods: In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2013